Source code for rankeval.analysis.effectiveness

# Copyright (c) 2017, All Contributors (see CONTRIBUTORS file)
# Authors:  Salvatore Trani <salvatore.trani@isti.cnr.it>
#           Franco Maria Nardini <francomaria.nardini@isti.cnr.it>
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

"""
This package implements several effectiveness analysis focused on assessing
the performance of the models in terms of accuracy. These functionalities can
be applied to several models at the same time, so to have a direct comparison
of the analysis performed.
"""

import numpy as np
import xarray as xr

from ..dataset import Dataset
from ..model import RTEnsemble
from ..metrics import Metric


[docs]def model_performance(datasets, models, metrics): """ This method implements the model performance analysis (part of the effectiveness analysis category). Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given metrics and models models : list of RTEnsemble The models to analyze metrics : list of Metric The metrics to use for the analysis Returns ------- metric_scores : xarray.DataArray A DataArray containing the metric scores of the models using the given metrics on the given datasets. """ data = np.zeros(shape=(len(datasets), len(models), len(metrics)), dtype=np.float32) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred = model.score(dataset, detailed=False) for idx_metric, metric in enumerate(metrics): data[idx_dataset][idx_model][idx_metric] = metric.eval(dataset, y_pred)[0] performance = xr.DataArray(data, name='Model Performance', coords=[datasets, models, metrics], dims=['dataset', 'model', 'metric']) return performance
[docs]def tree_wise_performance(datasets, models, metrics, step=10): """ This method implements the analysis of the model on a tree-wise basis (part of the effectiveness analysis category). Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given metrics and models models : list of RTEnsemble The models to analyze metrics : list of Metric The metrics to use for the analysis step : int Step-size identifying evenly spaced number of trees for evaluating the top=k model performance. (e.g., step=100 means the method will evaluate the model performance at 100, 200, 300, etc trees). Returns ------- metric_scores : xarray.DataArray A DataArray containing the metric scores of each model using the given metrics on the given datasets. The metric scores are cumulatively reported tree by tree, i.e., top 10 trees, top 20, etc., with a step-size between the number of trees as highlighted by the step parameter. """ def get_tree_steps(model_trees): trees = range(step-1, model_trees, step) # Add last tree to the steps if trees[-1] != model_trees-1: trees.append(model_trees-1) return np.array(trees) max_num_trees = 0 for model in models: if model.n_trees > max_num_trees: max_num_trees = model.n_trees tree_steps = get_tree_steps(max_num_trees) data = np.full(shape=(len(datasets), len(models), len(tree_steps), len(metrics)), fill_value=np.nan, dtype=np.float32) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred, partial_y_pred = model.score(dataset, detailed=True) # the document scores are accumulated along for the various top-k # (in order to avoid useless re-scoring) y_pred = np.zeros(dataset.n_instances) for idx_top_k, top_k in enumerate(get_tree_steps(model.n_trees)): # compute the document scores using only top-k trees of # the model on the given dataset idx_tree_start = idx_top_k * step idx_tree_stop = top_k + 1 y_pred += partial_y_pred[:, idx_tree_start:idx_tree_stop].sum(axis=1) # compute the metric score using the predicted document scores for idx_metric, metric in enumerate(metrics): metric_score, _ = metric.eval(dataset, y_pred) data[idx_dataset][idx_model][idx_top_k][idx_metric] = metric_score performance = xr.DataArray(data, name='Tree-Wise Performance', coords=[datasets, models, tree_steps+1, metrics], dims=['dataset', 'model', 'k', 'metric']) return performance
[docs]def tree_wise_average_contribution(datasets, models): """ This method provides the average contribution given by each tree of each model to the scoring of the datasets. Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given metrics and models models : list of RTEnsemble The models to analyze Returns ------- average_contribution : xarray.DataArray A DataArray containing the average contribution given by each tree of each model to the scoring of the given datasets. The average contribution are reported tree by tree. """ max_num_trees = 0 for model in models: if model.n_trees > max_num_trees: max_num_trees = model.n_trees data = np.full(shape=(len(datasets), len(models), max_num_trees), fill_value=np.nan, dtype=np.float32) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred, partial_y_pred = model.score(dataset, detailed=True) # the document scores are accumulated along for the various top-k # (in order to avoid useless re-scoring) y_contributes = np.full(max_num_trees, fill_value=np.nan, dtype=np.float32) y_contributes[:model.n_trees] = np.average(np.abs(partial_y_pred), axis=0) data[idx_dataset][idx_model] = y_contributes performance = xr.DataArray(data, name='Tree-Wise Average Contribution', coords=[datasets, models, np.arange(max_num_trees)], dims=['dataset', 'model', 'trees']) return performance
[docs]def query_wise_performance(datasets, models, metrics, bins=None, start=None, end=None): """ This method implements the analysis of the model on a query-wise basis, i.e., it compute the cumulative distribution of a given performance metric. For example, the fraction of queries with a NDCG score smaller that any given threshold, over the set of queries described in the dataset. Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given metrics and models models : list of RTEnsemble The models to analyze metrics : list of Metric The metrics to use for the analysis bins : int or None Number of equi-spaced bins for which to computer the cumulative distribution of the given metric. If bin is None, it will use the maximum number of queries across all the datasets as bins value. start : int or None The start point of the range for which we will compute the cumulative distribution of the given metric. If start is None, it will use the minimum metric score as starting point for the range. end : int or None The end point of the range for which we will compute the cumulative distribution of the given metric. If end is None, it will use the maximum metric score as starting point for the range. Returns ------- metric_scores : xarray.DataArray A DataArray containing the metric scores of each model using the given metrics on the given datasets. The metric scores are cumulatively reported tree by tree, i.e., top 10 trees, top 20, etc., with a step-size between the number of trees as highlighted by the step parameter. """ glob_metric_scores = np.full(shape=(len(datasets), len(models), len(metrics)), fill_value=np.nan, dtype=object) min_metric_score = max_metric_score = np.nan for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred = model.score(dataset, detailed=False) for idx_metric, metric in enumerate(metrics): _, metric_scores = metric.eval(dataset, y_pred) glob_metric_scores[idx_dataset][idx_model][idx_metric] = metric_scores min_metric_score = np.nanmin([min_metric_score, metric_scores.min()]) max_metric_score = np.nanmax([max_metric_score, metric_scores.max()]) if start is None: start = min_metric_score if end is None: end = max_metric_score if bins is None: bins = np.max([dataset.n_queries for dataset in datasets]) bin_values = np.linspace(start=start, stop=end, num=bins+1) data = np.full(shape=(len(datasets), len(models), len(metrics), bins), fill_value=np.nan, dtype=np.float32) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): for idx_metric, metric in enumerate(metrics): metric_scores = glob_metric_scores[idx_dataset][idx_model][idx_metric] # evaluate the histogram values, base = np.histogram(metric_scores, bins=bin_values) # evaluate the cumulative cumulative = np.cumsum(values, dtype=float) / metric_scores.size data[idx_dataset][idx_model][idx_metric] = cumulative performance = xr.DataArray(data, name='Query-Wise Performance', coords=[datasets, models, metrics, bin_values[:-1] + 1.0 / bins], dims=['dataset', 'model', 'metric', 'bin']) return performance
[docs]def query_class_performance(datasets, models, metrics, query_classes): """ This method implements the analysis of the effectiveness of a given model by providing a breakdown of the performance over query class. Whenever a query classification is provided, e.g., navigational, informational, transactional, number of terms composing the query, etc., it provides the model effectiveness over such classes. This analysis is important especially in a production environment, as it allows to calibrate the ranking infrastructure w.r.t. a specific context. Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given metrics and models models : list of RTEnsemble The models to analyze metrics : list of Metric The metrics to use for the analysis query_classes : list of lists A list containing lists of classes each one for a specific Dataset. The i-th item in the j-th list identifies the class of the i-th query of the j-th Dataset. Returns ------- query_class_performance : xarray.DataArray A DataArray containing the per-class metric scores of each model using the given metrics on the given datasets. """ glob_metric_scores = np.full(shape=(len(datasets), len(models), len(metrics)), fill_value=np.nan, dtype=object) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred = model.score(dataset, detailed=False) for idx_metric, metric in enumerate(metrics): _, metric_scores = metric.eval(dataset, y_pred) glob_metric_scores[idx_dataset][idx_model][idx_metric] = metric_scores # computing unique elements for each list of query class unique_query_classes = [np.unique(query_class) for query_class in query_classes] unique_classes = np.unique([c for d in unique_query_classes for c in d]) # defining destination array now saving values of the specific metric directly query_class_metric_scores = np.full(shape=(len(datasets), len(models), len(metrics), len(unique_classes)), fill_value=np.nan, dtype=np.float32) # computing the average metric over the specific categorization for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): for idx_metric, metric in enumerate(metrics): for idx_query_class, query_class in enumerate(unique_classes): indices = np.where(query_classes[idx_dataset] == query_class) # If this query class is not present in this dataset, skip it if not len(indices): continue query_class_metric_scores[idx_dataset][idx_model][idx_metric][idx_query_class] = \ glob_metric_scores[idx_dataset][idx_model][idx_metric][indices].mean() performance = xr.DataArray(query_class_metric_scores, name='Query Class Performance', coords=[datasets, models, metrics, unique_classes], dims=['dataset', 'model', 'metric', 'classes']) return performance
[docs]def document_graded_relevance(datasets, models, bins=100, start=None, end=None): """ This method implements the analysis of the model on a per-label basis, i.e., it allows the evaluation of the cumulative predicted score distribution. For example, for each relevance label available in each dataset, it provides the fraction of documents with a predicted score smaller than a given score (the latter are binned among start and end). By plotting this fractions it is possible to obtains a curve for each relevance label. The bigger the distance amongst curves the larger the model's discriminative power. Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given models models : list of RTEnsemble The models to analyze bins : int or None Number of equi-spaced bins for which to computer the cumulative distribution of the predicted scores. If bin is None, it will use the maximum number of queries across all the datasets as bins value. start : int or None The start point of the range for which we will compute the cumulative distribution of the predicted scores. If start is None, it will use the minimum metric score as starting point for the range. end : int or None The end point of the range for which we will compute the cumulative distribution of the predicted scores. If end is None, it will use the maximum metric score as starting point for the range. Returns ------- graded_relevance : xarray.DataArray A DataArray containing the fraction of documents with a predicted score smaller than a given score, for each model and each dataset. """ glob_doc_scores = np.full(shape=(len(datasets), len(models)), fill_value=np.nan, dtype=object) min_doc_score = max_doc_score = np.nan for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred = model.score(dataset, detailed=False) glob_doc_scores[idx_dataset][idx_model] = y_pred min_doc_score = np.nanmin([min_doc_score, y_pred.min()]) max_doc_score = np.nanmax([max_doc_score, y_pred.max()]) if start is None: start = min_doc_score if end is None: end = max_doc_score bin_values = np.linspace(start=start, stop=end, num=bins+1) rel_labels = np.sort(np.unique([dataset.y for dataset in datasets])) data = np.full(shape=(len(datasets), len(models), len(rel_labels), bins), fill_value=np.nan, dtype=np.float32) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): for idx_label, graded_rel in enumerate(rel_labels): indices = np.where(dataset.y == graded_rel) # If this graded relevance is not present in this dataset, skip it if not len(indices): continue y_pred = model.score(dataset, detailed=False) y_pred_curr = y_pred[indices] # evaluate the histogram values, base = np.histogram(y_pred_curr, bins=bin_values) # evaluate the cumulative cumulative = np.cumsum(values, dtype=float) / len(y_pred_curr) data[idx_dataset][idx_model][idx_label] = cumulative performance = xr.DataArray(data, name='Document Graded Relevance', coords=[datasets, models, rel_labels, bin_values[:-1] + 1.0 / bins], dims=['dataset', 'model', 'label', 'bin']) return performance
[docs]def rank_confusion_matrix(datasets, models, skip_same_label=False): """ RankEval allows for a novel rank-oriented confusion matrix by reporting for any given relevance label l_i, the number of document with a predicted score smaller than documents with label l_j. When l_i > l_j this corresponds to the number of mis-ranked document pairs. This can be considered as a breakdown over the relevance labels of the ranking effectiveness of the model. Parameters ---------- datasets : list of Dataset The datasets to use for analyzing the behaviour of the model using the given models models : list of RTEnsemble The models to analyze skip_same_label : bool True if the method has to skip the pair with the same labels, False otherwise Returns ------- ranked_matrix: xarray.DataArray A DataArray reporting for any given relevance label l_i, the number of documents with a predicted score smaller than documents with label l_j """ rel_labels = np.sort(np.unique([dataset.y for dataset in datasets])).astype(np.int32) data = np.zeros(shape=(len(datasets), len(models), len(rel_labels), len(rel_labels)), dtype=np.int32) for idx_dataset, dataset in enumerate(datasets): for idx_model, model in enumerate(models): y_pred = model.score(dataset, detailed=False) for query_id, (start_offset, end_offset) in enumerate(dataset.query_offset_iterator()): for i in np.arange(start_offset, end_offset): for j in np.arange(i, end_offset): # check if the two documents have the same label and skip them if skip_same_label and dataset.y[i] == dataset.y[j]: continue y_i = dataset.y[i].astype(np.int32) y_j = dataset.y[j].astype(np.int32) if y_pred[i] < y_pred[j]: data[idx_dataset][idx_model][y_i, y_j] += 1 else: data[idx_dataset][idx_model][y_j, y_i] += 1 performance = xr.DataArray(data, name='Rank Confusion Matrix', coords=[datasets, models, rel_labels, rel_labels], dims=['dataset', 'model', 'label_i', 'label_j']) return performance